Магнетроны: технология

Магнетроны являются важнейшими электронными приборами, предназначенными для генерации сверхчастотных колебаний высокой мощности. Как правило, они используются для высокочастотного нагрева, в ускорителях заряженных частиц, а также устанавливаются в передатчиках радиолокационных станций. За счет одновременного воздействия магнитного и электрического полей на потоки электронов устройство генерирует колебания высокой частоты. Широкое распространение в настоящее время получили многорезонаторные магнетроны. Впервые идея создания подобных приборов была предложена ученым М. А. Бонч-Бруевичем, а заслуга разработки и испытания первых образцов принадлежит Н. Ф. Алексееву и Д. Е. Малярову.

Устройство прибора

Устройство магнетрона изображено на рис. 1. Основой конструкции является диод с анодом, а также оксидный подогревный катод, имеющий большую площадь поверхности. На торцах катода располагаются специальные диски, которые препятствуют перемещению электронов вдоль оси. Внутри анода, выполненного в форме массивного медного блока, размещено четное число резонаторов в виде цилиндрических отверстий. Для их соединения с пространством взаимодействия в конструкции прибора предусмотрена щель, выполняющая функцию конденсатора. В процессе работы в щели образуется электрическое поле, а на ее поверхностях возникают переменные электрические заряды.

Устройство магнетрона

Рис. 1. Устройство магнетрона.

Индуктивностью резонатора служит цилиндрическая поверхность отверстия, которая эквивалентна одному витку. Большая площадь поверхности витка приводит к уменьшению активного сопротивления и индуктивности. Такой резонатор представляет собой нечто среднее между колебательной системой с сосредоточенными параметрами и четвертьволновой резонансной линией. В некоторых типах магнетронов резонаторы делают в виде щели глубиной в четверть волны (рис. 2).

Все резонаторы магнетрона сильно связаны друг с другом, вследствие того что переменный магнитный поток одного резонатора замыкается через соседние резонаторы (рис. 3). Кроме того, резонаторы соединяют друг с другом посредством проводов, называемых связками.

Резонаторы магнетрона

Рис. 2. Резонаторы магнетрона в виде четвертьволновых короткозамкнутых линий.

Наружная часть анода обычно делается в виде ребристого радиатора для лучшего охлаждения. Иногда его обдувают воздухом. С боковых сторон к аноду припаяны медные диски, образующие вместе с анодом баллон, необходимый для сохранения вакуума. Выводы от подогревателя проходят в стеклянных трубках, спаянных с анодом. Катод обычно подключен к одному из выводов подогревателя.

Магнитная связь между соседними резонаторами

Рис. 3. Магнитная связь между соседними резонаторами.

Для отбора энергии колебаний вводится в один из резонаторов виток связи, соединенный с коаксиальной линией. Ее вывод также проходит через стеклянную трубку. Благодаря сильной связи между резонаторами энергия отбирается от всех резонаторов. Вместо коаксиальной линии для вывода энергии на очень коротких волнах используется волновод, соединенный с резонатором через щель. Иногда также применяют коаксиально-волноводный вывод.

Анод магнетрона имеет высокий положительный потенциал относительно катода. Так как анод служит корпусом магнетрона, то его обычно заземляют, а катод находится под высоким отрицательным потенциалом. Между анодом и катодом создается ускоряющее поле, силовые линии которого расположены радиально, как в диоде с цилиндрическими электродами. Вдоль оси магнетрона действует сильное постоянное магнитное поле, созданное магнитом, между полюсами которого располагается магнетрон. Один из вариантов магнитной системы показан на рис. 4. В так называемых пакетированных магнетронах постоянные магниты входят в конструкцию самого магнетрона.

Магнетрон с внешней магнитной системой

Рис. 4. Магнетрон с внешней магнитной системой 1 — вывод СВЧ; 2 —радиатор; 3 — магнит; 4 — вывод подогревателя.

Рассмотрим сначала движение электронов в магнетроне, предполагая, что колебаний в резонаторах нет. Для упрощения изобразим анод без щелей (рис. 5). Под влиянием ускоряющего электрического поля электроны стремятся лететь по силовым линиям, т.е. по радиусам, к аноду. Но как только они набирают некоторую скорость, постоянное магнитное поле, действующее перпендикулярно электрическому полю, начинает искривлять их траектории. Так как скорость электронов постепенно нарастает, то радиус этого искривления постепенно увеличивается. Поэтому траектория электронов будет сложной кривой. На рисунке показаны траектории электрона, вылетевшего из катода с ничтожно малой начальной скоростью, для разных значений магнитной индукции В.Анодное напряжение при этом одно и то же.

Если В = 0, то электрон летит по радиусу 1. При магнитной индукции, меньшей некоторого критического значения Вкр, электрон попадает на анод по криволинейной траектории 2. Критическая магнитная индукция Вкр соответствует более искривленной траектории 3. В этом случае электрон пролетает у поверхности анода, почти касаясь ее, и возвращается на катод. Наконец, если В > Вкр, то электрон еще круче поворачивает обратно где-то в промежутке между анодом и катодом (кривая 4) и возвращается на катод.

Влияние магнитного поля

Рис. 5. Влияние магнитного поля на движение электронов в магнетроне.

Влияние магнитной индукции

Магнетроны работают при магнитной индукции, несколько большей, чем критическая. Поэтому электроны при отсутствии колебаний пролетают близко к поверхности анода, но на различных расстояниях от нее, так как при вылете из катода они имеют различную начальную скорость. Поскольку движется очень большое число электронов, то можно сказать, что вокруг катода вращается электронный объемный заряд в виде кольца — электронное «облачко» (рис. 6). Конечно, электроны не находятся в нем постоянно. Ранее вылетевшие электроны возвращаются на катод, а на их место из катода вылетают новые электроны. Скорость вращения электронного «облачка» зависит от анодного напряжения, с увеличением которого электроны пролетают около анода с большей скоростью. Чтобы электроны не попадали на анод, необходимо увеличивать при этом и магнитную индукцию.

Вращающийся электронный объемный заряд, образованный совместным действием постоянных электрического и магнитного полей, взаимодействует с переменными электрическими полями резонаторов и поддерживает в них колебания. Процесс взаимодействия весьма сложен, поэтому он будет рассмотрен лишь приближенно.

Вращающееся электронное «облачко» при отсутствии колебаний

Рис. 6. Вращающееся электронное «облачко» в магнетроне при отсутствии колебаний.

Колебания в резонаторах

Прежде всего выясним вопрос о возникновении колебаний в резонаторах. Так как все резонаторы сильно связаны друг с другом, то они представляют собой сложную колебательную систему, имеющую несколько собственных частот. Когда электронный поток впервые начинает вращаться около щелей резонаторов (например, при включении анодного напряжения), то в резонаторах появляются импульсы наведенного тока и возникают затухающие колебания. Они могут иметь разную частоту и фазу. Например, если система симметрична, то в резонаторах должны возникнуть колебания, совпадающие по фазе. Однако полной симметрии быть не может. Поэтому возникают и другие колебания с фазовым сдвигом между собой.

Основной тип колебаний, дающий наибольшую полезную мощность и наиболее высокий КПД,— колебания в соседних резонаторах с фазовым сдвигом 180° (колебания π-вида). На рис. 7 изображены силовые линии переменных электрических полей для таких колебаний и знаки переменных потенциалов на сегментах анода, а также направления токов, протекающих по поверхности резонаторов. Так как роль постоянного электрического поля, ускоряющего электроны и дающего им кинетическую энергию, известна, то для упрощения это поле не показано.

Для противофазных колебаний очень сильна индуктивная связь между резонаторами, за счет того что магнитный поток из одного резонатора переходит в соседние резонаторы. Магнетроны, как правило, работают с этим типом колебаний, и приняты меры для того, чтобы такие колебания возбуждались как можно легче. С этой целью применяют связки, т. е. соединяют проводами через один сегменты анода, имеющие переменные потенциалы одного знака. Возникающие колебания других типов обычно быстро затухают.

Путь электронов в магнетроне

Рис. 7. Путь «вредного» (А) и «полезного» (Б) электрона в магнетроне при колебаниях в резонаторах.

Взаимодействие электронов с переменным электрическим полем таково, что при правильном режиме электронный поток отдает полю больше энергии, чем отбирает от него. Это именно и нужно для превращения возникших в резонаторах колебаний в незатухающие. Передаче энергии от электронного потока в резонаторы способствуют следующие явления.

Прежде всего переменное электрическое поле как бы сортирует электроны на «полезные» и «вредные», причем «вредные» электроны быстро удаляются из пространства взаимодействия, возвращаясь на катод. Рассмотрим этот процесс.

Для электронов, движущихся по часовой стрелке, электрические поля резонаторов 1, 3, ...— ускоряющие, а поля резонаторов 2, 4, ... — тормозящие. Через полпериода эти поля поменяются местами. На рисунке показаны траектории двух электронов. Электрон А попадает в ускоряющее поле и отбирает энергию от резонатора, т. е. представляет собой «вредный» электрон, но он пролетает далеко от щели резонатора и возвращается на катод. При наличии одного постоянного поля этот электрон летел бы по траектории, показанной штрихами. Но поле резонатора 1 усиливает искривление пути электрона и увеличивает его энергию: он преодолевает действие постоянного поля и возвращается на катод. «Вредные» электроны бомбардируют катод и увеличивают его нагрев. С этим явлением в магнетронах приходится считаться. Для того чтобы не было перекала катода, во время работы магнетрона обычно уменьшают напряжение накала. Кроме того, поверхность катода необходимо делать более прочной, чтобы предотвратить ее разрушение ударами электронов.

Более сложным оказывается путь «полезного» электрона Б, попавшего в тормозящее переменное поле резонатора 2. Такой электрон отдает часть своей энергии резонатору и уже не имеет энергии, достаточной для того, чтобы вернуться на катод. Он теряет полностью свою энергию в какой-то точке пространства взаимодействия, не долетев до катода, а затем снова ускоренно летит к аноду, и одновременно траектория его искривляется под действием магнитного поля.

Если в магнетроне правильно подобрано анодное напряжение и магнитная индукция, то время пролета «полезного» электрона от одной щели до другой составляет полпериода. Такой электрон, приблизившись к щели резонатора 3, опять окажется в тормозящем переменном поле, так как через полпериода у этого резонатора ускоряющее поле изменится на тормозящее. Следовательно, электрон снова отдаст часть энергии резонатору и проделает еще меньший путь по направлению к катоду. В конце концов, израсходовав значительную часть энергии, электрон попадает на анод. Рассмотренная траектория «полезного» электрона, конечно, только приближенная.

«Полезные» электроны отдают резонаторам больше энергии, чем отнимают ее от резонаторов «вредные» электроны. Действительно, «вредный» электрон отнимает энергию только у одного резонатора, причем этот электрон пролетает довольно далеко от щели, т. е. в слабом переменном поле. Он отнимает небольшую энергию. А «полезный» электрон отдает энергию двум резонаторам и пролетает ближе к их щелям, т. е. в более сильном переменном поле.

Передаче энергии от электронов к резонаторам способствует модуляция электронного потока, напоминающая модуляцию в двухрезонаторном клистроне. Каждый предыдущий резонатор в магнетроне служит модулятором для вращающегося электронного облака, а каждый следующий резонатор — уловителем. Однако процесс модуляции здесь сложнее, чем в клистроне. В двухрезонаторном клистроне электронный поток, движущийся поступательно, подвергается скоростной модуляции и разбивается на отдельные сгустки (группируется). Последний процесс совершается в пространстве дрейфа, где нет электрического и магнитного поля.

В магнетроне вращающийся электронный поток также подвергается действию переменного электрического поля данного резонатора и за счет этого осуществляется модуляция скорости электронов. Но это поле не однородное, как в клистроне. Поэтому оно меняет не только скорость, но и траекторию движения электронов. Процесс усложняется тем, что происходит в радиальном постоянном электрическом поле, которое изменяет скорость электронов и совместно с постоянным магнитным полем влияет на их траекторию.

В результате скоростной модуляции и изменения траекторий электронов вращающееся электронное «облачко» из кольцевого превращается в зубчатое. Оно напоминает колесо со спицами, но без обода (рис. 8). Число электронных «спиц» равно половине числа резонаторов. Конечно, резких переходов от этих «спиц» к промежуткам между ними нет. «Спица» представляет собой сгущение электронного потока в результате скоростной модуляции и из-за различных траекторий «полезных» и «вредных» электронов. А между сгущениями имеются более разреженные области.

Вращающееся электронное «облачко» при колебаниях в резонаторах

Рис. 8. Вращающееся электронное «облачко» в магнетроне при колебаниях в резонаторах.

Электронное «облачко» при правильном режиме магнетрона вращается с такой скоростью, что «спицы» проходят мимо щелей в тот момент, когда там существует тормозящее поле. Промежутки между «спицами», наоборот, проходят через ускоряющие поля. В итоге происходит отдача электронным «облачком» энергии резонаторам и потеря энергии на разогрев катода и анода от электронной бомбардировки. Вся эта энергия потребляется от анодного источника.

Существует следующая зависимость между числом резонаторов N, магнитной индукцией В и частотой генерируемых колебаний f:
NB = af,
где а — коэффициент, зависящий от конструкции.
А магнитная индукция связана с анодным напряжением формулой
В = b √Uа,
где b — постоянная величина.

Из формул видно, что для более высоких частот нужно иметь больше резонаторов или увеличивать магнитную индукцию и анодное напряжение.

Обычно магнитная индукция составляет от 0,1 до 0,5 Тл. Для импульсной работы в дециметровом диапазоне магнетроны строят на мощность в десятки тысяч киловатт, а в сантиметровом — в тысячи киловатт. В самых мощных магнетронах анодное напряжение в импульсе достигает десятков киловольт, а анодный ток — сотен ампер. Магнетроны для непрерывного режима имеют мощность в десятки киловатт на дециметровых волнах и в единицы киловатт — на сантиметровых. В мощных магнетронах применяется принудительное, воздушное или водяное охлаждение; КПД мощных магнетронов может быть 70 % и даже выше при работе в дециметровом диапазоне, в сантиметровом диапазоне 30 — 60%.

Помимо магнетронов на фиксированную частоту делают настраиваемые магнетроны, в которых изменяется собственная частота резонаторов. С этой целью для получения более коротких волн вводят в резонаторы медные цилиндры, которые уменьшают индуктивность, а для получения более длинных волн — металлические пластинки, увеличивающие емкость. Такие методы дают изменение частоты не более чем на 10—15%. Выполнение подобных устройств представляет известные трудности, так как находятся эти устройства в вакууме, а управляться должны извне.

Электронная перестройка частоты магнетрона основана на том, что эта частота зависит от анодного тока. Изменение анодного тока на 1 А может дать изменение частоты до нескольких десятков мегагерц. Но в обычных магнетронах такая электронная настройка не получила широкого применения.

Особый тип магнетронов - митроны

Однако существует особый тип магнетронов — магнетроны, настраиваемые напряжением (митроны), в которых, изменяя анодное напряжение и соответственно анодный ток, можно получить даже двукратное изменение частоты. Конструкция их несколько отличается от конструкции обычных магнетронов. Особенность этих магнетронов в том, что анодный ток у них ограничен за счет ослабления эмиссии катода (недокала катода) и имеется внешний резонатор с низкой добротностью, т. е. с широкой полосой частот. В непрерывном режиме работы при изменении частоты в два раза эти магнетроны дают выходную мощность в единицы ватт. А при меньших изменениях частоты (5 — 20%) они могут давать мощность в десятки ватт.

Принцип устройства коаксиального магнетрона

Рис. 9. Принцип устройства коаксиального магнетрона.

Обычные магнетроны обладают недостаточно высокой стабильностью фазы и частоты. Гораздо более стабильными являются колебания π-вида, генерируемые так называемыми коаксиальными магнетронами (рис. 9). В подобных приборах снаружи анодного блока размещен объемный резонатор, имеющий собственную частоту. Он соединен с резонаторами анода при помощи щелей, сделанных не в каждом из установленных резонаторов, а через один. Благодаря такой конструкции во всех резонаторах устройства, связанных с внешним, образуются колебания, имеющие одинаковую фазу, а колебания в соседних резонаторах будут противофазными.

Для генерации коротких сантиметровых волн рекомендуется использовать обращенный коаксиальный магнетрон. Особенностью данного прибора является то, что анод и катод в нем переставлены местами. Катод представляет собой наружный цилиндр, на внутренней поверхности которого эмитируются электроны. Внутри него расположен анод с резонаторами, а внутри анода размещается высокодобротный объемный резонатор, применяемый для стабилизации колебаний и соединенный щелями с резонаторами, установленными в анодном блоке.

Новый вид - ниготроны

Одной из новых моделей среди магнетронных приборов является ниготрон, идея создания которого принадлежит академику П. Л. Капице. Такое устройство представляет собой объемный цилиндрический резонатор, внутри которого коаксиально расположены анод и катод, при этом каждый из них выполнен в виде целой системы отдельных сегментов. Вдоль оси подобного прибора постоянно действует магнитное поле. Основной резонатор имеет высокую добротность, что обеспечивает необходимый уровень стабильности частоты генерируемых колебаний. При непрерывной работе на дециметровых волнах выходная мощность ниготрона может составлять 100 кВт, при чем это становится возможным даже при КПД до 50%.

Новости

06/ 09 2023

Модернизированный магнетрон GDM-6090 доступен для заказа!

Является аналогом магнетрона MG6090 компании E2V (Великобритания).

06/ 04 2023

Поможем в организации параллельного импорта

Холдинг помогает в организации параллельного импорта для ввоза продукции в Россию.

21/ 06 2022

Компании холдинга соответствуют ГОСТ Р ИСО 9001-2015

Компании холдинга (ООО "Т-Холдинг" и ООО "ГалВак") соответствуют требованиям ГОСТ Р ИСО 9001-2015.